단백질 구조변화를 한 편의 영화처럼 촬영
미세유체장치로 시분해 시료 제작, 생화학반응 원자수준에서 규명
□ 단백질을 꽁꽁 얼려 찰나에 일어나는 단백질의 구조변화를 한 편의 영화처럼 볼 수 있는 기술이 개발됐다.
○ 단백질은 물질대사, 효소 활성화 작용 등 다양한 생체활동을 주도하는 고분자로 대부분 이들 단백질을 표적으로 약물이 개발되는 경우가 많다. 그런데 이들 단백질의 기능은 주로 3차원 구조에서 비롯되기에 단백질의 구조를 이해하는 것은 의약학 분야의 중요한 화두이다.
□ 한국연구재단(이사장 노정혜)은 이창수 교수(충남대학교 응용화학공학과) 연구팀은 국제공동연구를 통해 초저온투과전자현미경(cryo-TEM)을 이용, 생화학 반응에서 단백질의 3차원 구조변화를 분석할 수 있는 미세유체장치를 개발했다고 밝혔다.
※초저온투과전자현미경(Cryo-EM) : 단백질 같은 생체분자의 3차원 구조를 고해상도로 해석하는 전자현미경, 전자빔에 의한 시료손상을 막기 위해 영하 196℃에서 급냉하여 얇은 비정질 얼음막 내 시료를 보존한다.
○ 단백질 구조변화 관찰에는 2017년 노벨화학상을 수상한 초저온 투과전자현미경이 주로 사용되지만 샘플제작을 위한 소요 시간이 수 십 초 이상 이다. 밀리 초(1000분의 1초, ms) 단위에서 일어나는 생화학반응에서 단백질의 동역학적 거동을 관찰 하기란 불가능했다.
□ 이에 연구팀은 시분해능(time-resolved) 샘플링이 가능한 미세유체장치를 이용하여 반응물로부터 반응중인 시료를 급냉, 반응의 중간체 구조를 얻는 방법을 고안하였다.
○ 미세유체장치 내에서 흐르는 반응물 시료의 유량을 정밀하게 제어, 장치 내 반응물의 체류 시간을 이용하여 생화학 반응 시간을 계산하는 원리를 이용하였다.
□ 기존 장치는 넓은 범위의 시분해능을 얻기 위해 장치 부피를 늘리거나 유량을 줄이는 방식이었다.
○ 이 경우 혼합효율 저하와 유속의 편차로 서로 다른 반응 시간을 갖는 중간체가 공존하게 된다. 때문에 구조를 해석하기 어렵고 동적변화의 순서를 파악하기 어려운 한계가 있었다.
□ 이를 해결하기 위해 연구팀은 레고처럼 손쉽게 조립할 수 있는 모듈화된 구조로 넓은 범위의 시분해능을 확보할 수 있는 장치를 제작하였다.
○ 각기 다른 체류시간을 갖는 미세유체모듈을 분사모듈에 장착하여 20~1,500 밀리 초(ms)의 범위에서 반응시간을 제어할 수 있었다.
□ 실제 이미 구조가 알려진 모델단백질(Apoferritin)을 미세유체장치를 통해 분사하여 초저온투과전자현미경으로 관찰, 원자 수준에 해당하는 2.77Å의 초고해상도 3차원 구조를 확보하였다.
○ 한편 시분해능을 확인하기 위해, 단일가닥 DNA상 사슬화반응이 일어나는 RecA 효소를 통해 검증하였다.
□ 이번 연구성과는 충남대학교 연구팀과 스위스 ETH Zurich 연구진(마티아스 피터 교수, 이성식 박사), 영국 프랜시스크릭연구소(Radoslav Enchev 박사, Märt-Erik Mäeots 연구원)의 긴밀한 국제공동연구를 통해 얻은 결과이다.
○ 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 (글로벌연구실사업)의 지원으로 수행된 이번 연구의 성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)에 7월 10일 게재 되었다.